The CuCl2/Al2O3 Catalyst Investigated in Interaction with Reagents

نویسندگان

  • Carlo Lamberti
  • Carmelo Prestipino
  • Luciana Capello
  • Silvia Bordiga
  • Adriano Zec
  • Giuseppe Spoto
  • Sofia Diaz Moreno
  • Andrea Marsella
  • Barbara Cremaschi
  • Marco Garilli
  • Sandro Vidotto
  • Giuseppe Leofanti
چکیده

Alumina supported CuCl2, the basic catalyst for ethylene oxychlorination, has been investigated by UV-Vis spectroscopy, EPR, EXAFS and XANES in a wide range (0.25-9.0 wt%) of Cu concentration. We have evidenced that, at low Cu content, the formation of a surface aluminate species takes place. The formation of this surface copper aluminate stops at 0.95 wt% Cu / 100 m; at higher Cu concentrations excess copper chloride precipitates directly from solution during the drying step forming an highly dispersed CuCl2 . H2O, phase, overlapping progressively the surface aluminate. Depletion tests and IR spectroscopy of adsorbed NO have demonstrated that the latter is the only active phase. A complete catalytic cycle has then been performed on CuCl2/Al2O3 catalyst. EPR, XANES and EXAFS, have been used to demonstrate that the ethylene oxychlorination reaction: C2H4 + 2HCl + 1⁄2 O2 → C2H4Cl2 + H2O follows a three steps mechanism: (i) reduction of CuCl2 to CuCl (2CuCl2 + C2H4 → C2H4Cl2 + 2CuCl), (ii) oxidation of CuCl to give an oxychloride (2CuCl + 1⁄2 O2 → Cu2OCl2) and (iii) closure of the catalytic circle by rechlorination with HCl, restoring the original CuCl2 (Cu2OCl2 + 2HCl → 2CuCl2 + H2O). Finally, we have shown that time resolved, in situ, spectroscopy is a very promising technique to investigate the interplay between catalyst activity and oxidation state of copper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and the catalysis mechanism of oxidative chlorination in nanostructural layers of a surface of alumina

On the basis of X-ray diffraction and mass spectrometric analysis of carrier γ-Al2O3 and catalysts CuCl2/CuCl on its surface, the chemical structure of the active centers of two types oxidative chlorination catalysts applied and permeated type of industrial brands "Harshow" and "MEDС-B" was investigated. On the basis of quantum-mechanical theory of the crystal, field complexes were detected by ...

متن کامل

Synthesis of 1, 3, 5-Triarylbenzenes, Using CuCl2 as a New Catalyst

Among the aromatic ketones, aceto phenone and its various substituted derivatives have been studied since early 20 century. This ketone can perform the self condensation reaction and produces trimmer having an aromat ic ring of 1,3,5-triphenyl benzene (T.P.B) with general fo rmula of C24H18. In this research, the compounds 1,3,5-triphenyl benzene and 1,3,5-tris (2-naphthyl) benzene are synthesi...

متن کامل

Sulfonic Acid Functionalized Nano-γ-Al2O3: A New, Efficient, and Reusable Catalyst for Synthesis of 3-Substituted-2H-1,4-Benzothiazines

A simple and efficient synthetic protocol has been developed for the synthesis of 3-substituted-2H-1,4-benzothiazines by using a novel sulfonic acid functionalized nano-γ-Al2O3 catalyst, devoid of corrosive acidic, and basic reagents. The developed method has the advantages of good to excellent yields, short reaction times, operational simplicity, and a recyclable catalyst. The catalyst can be ...

متن کامل

Immobilizing Phosphotungstic Acid on Al2O3-ZnO Nano Mixed Oxides as Heterogeneous Catalyst for Biodiesel Production by Esterification of Free Fatty Acids

In this study, esterification reaction of different carboxylic acids (Acetic acid, Palmitic acid, Oleic acid) with ethanol was investigated by ZnO, Al2O3-ZnO mixed oxide and phosphotungestic acid (10 %wt) immobilized on the Al2O3-ZnO mixed oxide. The heterogeneous catalysts were characterized by XRD, BET, FE-SEM and EDX techniques. Optimum yield was achieved by using 10% HPW/Al2O3-ZnO as the be...

متن کامل

Methane oxy-steam reforming over a highly efficient Ni/Al2O3 nanocatalyst prepared by microwave-assisted impregnation method

An alumina-supported nickel catalyst was prepared by impregnation of Ni2+ solution onto mesoporous alumina under microwave irradiation (denoted as M-Ni/Al2O3). For comparison, a catalyst with the same nickel content was prepared by conventional impregnation method (denoted as UM-Ni/Al2O3). Both M-Ni/Al2O3 and UM-Ni/Al2O3 catalysts were applied to the syngas (H2 + CO) production by methane oxy-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001